题目内容
【题目】函数
(1)求的值;
(2)时,求的取值范围;
(3)函数的性质通常指的是函数的定义域、值域、单调性、周期性、奇偶性等,请你探究函数其中的三个性质(直接写出结论即可)
【答案】(1)(2)(3)①定义域②值域③偶函数④⑤在单调递增,在单调递减(写出任意三个即可)
【解析】
(1)把所给的自变量的值代入函数式,根据诱导公式化简整理出结果.
(2)对函数式进行整理,得到y=Asin(ωx+φ)的形式,根据所给的角的范围写出ωx+φ的范围,根据三角函数的图象得到函数的值域.
(3)根据上一问整理出的函数的解析式,得到函数的定义域、值域、周期性、奇偶性、单调性等.
(1).
(2)当时,,则sin2x≥0,cos2x≥0.
∴
又∵
∴∴
∴当时,f(x)的取值范围为.
(3)①f(x)的定义域为R;
②∵f(﹣x)=|sin(﹣2x)|+|cos(﹣2x)|=|sin2x|+|cos2x|=f(x)∴f(x)为偶函数.
③∵,
∴f(x)是周期为的周期函数;
④由(2)可知,当时,,
∴值域为.
⑤可作出f(x)图象,如图所示:
由图象可知f(x)的增区间为(k∈Z),
减区间为(k∈Z) (写出任意三个即可)
【题目】某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | 0.050 | |
第2组 | n | 0.350 | |
第3组 | 30 | p | |
第4组 | 20 | 0.200 | |
第5组 | 10 | 0.100 | |
合计 | 100 | 1.000 |
(1)求频率分布表中n,p的值,并估计该组数据的中位数(保留l位小数);
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.
【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意程度进行调查,并随机抽取了其中30名员工(16名女工,14名男工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根据以上数据,估计该企业得分大于45分的员工人数;
(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平局得分为 “满意”,否则为 “不满意”,请完成下列表格:
“满意”的人数 | “不满意”的人数 | 合计 | |
女员工 | 16 | ||
男员工 | 14 | ||
合计 | 30 |
(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?
参考数据:
P(K2K) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |