题目内容

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=1,M为PD的中点. (Ⅰ)证明:PB∥平面ACM;
(Ⅱ)设直线AM与平面ABCD所成的角为α,二面角M﹣AC﹣B的大小为β,求sinαcosβ的值.

【答案】证明:(Ⅰ)连结OM,在△PBD中, ∵O为AC的中点,M为PD的中点.∴OM∥PB,
∵OM平面ACM,PB平面ACM,
∴PB∥平面ACM;
(Ⅱ)取DO的中点N,连结MN,AN,则MN∥PO,
∵PO⊥平面ABCD,∴MN⊥平面ABCD,
∴∠MAN=α为所求的直线AM与平面ABCD所成的角.
∵MN= PO=
在Rt△ADO中,∵DO= = ,AN= DO=
在Rt△AMN中,AM= =
∴sinα= ,(8分)
取AO的中点R,连结NR,MR,
∵NR∥AD,∴NR⊥OA,MN⊥平面ABCD,
由三垂线定理知MR⊥AO,故∠MRN为二面角M﹣AC﹣B的补角,即为π﹣β.
∵NR= ,MN= ,∴cos(π﹣β)=﹣cosβ= ,(11分)
∴sinαcosβ= =﹣

【解析】(Ⅰ)连结OM,推导出OM∥PB,由此能证明PB∥平面ACM.(Ⅱ)取DO的中点N,连结MN,AN,则MN∥PO,推导出∠MAN=α为所求的直线AM与平面ABCD所成的角,从而求出sinα= ,取AO的中点R,连结NR,MR,则∠MRN为二面角M﹣AC﹣B的补角,即为π﹣β.从而得到cos(π﹣β)=﹣cosβ= ,由此能求出sinαcosβ.
【考点精析】通过灵活运用直线与平面平行的判定,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网