题目内容

【题目】在平面直角坐标系xoy中,已知中心在原点,焦点在x轴上的双曲线C的离心率为,且双曲线C与斜率为2的直线l相交,且其中一个交点为P(﹣3,0).

(1)求双曲线C的方程及它的渐近线方程;

(2)求以直线l与坐标轴的交点为焦点的抛物线的标准方程.

【答案】(1);(2)

【解析】试题分析:(1)设出双曲线方程,利用点在双曲线以及双曲线的离心率求解即可.

(2)求出直线与坐标轴的交点,然后利用抛物线的性质求解抛物线方程即可.

试题解析:(1)由题意,设双曲线的方程为,∵点P(﹣3,0)在双曲线上,∴a=3.∵双曲线C的离心率为:,∴,∵c2=a2+b2,∴b=3,∴双曲线的方程为:其渐近线方程为:y=±x.

(2)由题意,直线l的方程为y=2(x+3),即y=2x+6,直线l与坐标轴交点分别为F1(﹣3,0),F2(0,6),∴以F1(﹣2,0)为焦点的抛物线的标准方程为y2=﹣12x;以F2(0,4)为焦点的抛物线的标准方程为x2=24y.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网