题目内容
【题目】已知全集U={x|x≤4},集合A={x|﹣2<x<3},B={x|﹣3≤x≤2},求A∩B,(UA)∪B,A∩(UB).
【答案】解:如图所示,
∵A={x|﹣2<x<3},B={x|﹣3≤x≤2},
∴UA={x|x≤﹣2,或3≤x≤4},UB={x|x<﹣3,或2<x≤4}.
故A∩B={x|﹣2<x≤2},(UA)∪B={x|x≤2,或3≤x≤4},A∩(UB)={x|2<x<3}
【解析】全集U={x|x≤4},集合A={x|﹣2<x<3},B={x|﹣3≤x≤2},求出CUA,CUB,由此能求出A∩B,(UA)∪B,A∩(UB).画数轴是最直观的方法.
【考点精析】掌握交、并、补集的混合运算是解答本题的根本,需要知道求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
练习册系列答案
相关题目