题目内容

【题目】关于函数y=log4(x2﹣2x+5)有以下4个结论:其中正确的有 ①定义域为R; ②递增区间为[1,+∞);
③最小值为1; ④图像恒在x轴的下方.

【答案】①②③
【解析】解:因为x2﹣2x+5=(x﹣1)2+4>0,所以定义域为R; y=x2﹣2x+5的增区间是[1,+∞),故函数y=log4(x2﹣2x+5)的递增区间为[1,+∞);
ymin=log44=1;
因为函数的最小值是1,故图像都在x轴的上方.
所以答案是:①②③.
【考点精析】认真审题,首先需要了解对数函数的单调性与特殊点(过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网