题目内容
【题目】设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x)且有3f(x)+xf′(x)<0,则不等式(x+2016)3f(x+2016)+8f(﹣2)<0的解集为( )
A.(﹣2018,﹣2016)
B.(﹣∞,﹣2018)
C.(﹣2016,﹣2015)
D.(﹣∞,﹣2012)
【答案】A
【解析】解:构造函数g(x)=x3f(x),g′(x)=x2(3f(x)+xf′(x));
当x<0时,
∵3f(x)+xf′(x)<0,x2>0;
∴g′(x)<0;
∴g(x)在(﹣∞,0)上单调递减;
g(x+2016)=(x+2016)3f(x+20165),g(﹣2)=﹣8f(﹣2);
∴由不等式(x+2016)3f(x+2016)+8f(﹣2)<0得:
(x+2016)3f(x+2016)<﹣8f(﹣2)
∴g(x+2016)<g(﹣2);
∴x+2016>﹣2,且x+2016<0;
∴﹣2018<x<﹣2016;
∴原不等式的解集为(﹣2018,﹣2016).
故选:A.
【考点精析】通过灵活运用基本求导法则,掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导即可以解答此题.
练习册系列答案
相关题目