题目内容
【题目】如图,在平面直角坐标系xoy中,抛物线y2=2px(p>0)的准线l与x轴交于点M,过点M的直线与抛物线交于A,B两点,设A(x1 , y1)到准线l的距离d=2λp(λ>0)
(1)若y1=d=3,求抛物线的标准方程;
(2)若 +λ = ,求证:直线AB的斜率的平方为定值.
【答案】
(1)解:抛物线y2=2px的焦点F( ,0),准线方程为x=﹣ ,
则|AF|=y1,可得AF⊥x轴,
则x1= ,即有d= + =3,即p=3,
则抛物线的方程为y2=6x;
(2)证明:设B(x2,y2),AB:y=k(x+ ),代入抛物线的方程,可得
k2x2+p(k2﹣2)x+ =0,
由△=p2(k2﹣2)2﹣k4p2>0,即为k2<1,
x1= ,x2= ,
由d=2λp,可得x1+ =2λp,
由 +λ = ,M(﹣ ,0),
可得x1+ =λ(x2﹣x1),
即有2p=x2﹣x1= ,
解得k2= .
故直线AB的斜率的平方为定值.
【解析】(1)求得抛物线的焦点和准线方程,由题意可得AF⊥x轴,即有p=3,进而得到抛物线的方程;(2)设B(x2 , y2),AB:y=k(x+ ),代入抛物线的方程,可得x的方程,运用判别式大于0和求根公式,运用向量共线的坐标表示,可得2p=x2﹣x1 , 解方程即可得到所求定值.
【题目】已知某海滨浴场海浪的高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作:.下表是某日各时的浪高数据.
t(时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)根据以上数据,求函数y=f(t)的函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动?