题目内容
【题目】已知抛物线的焦点为,抛物线的焦点为.
(1)若过点的直线与抛物线有且只有一个交点,求直线的方程;
(2)若直线与抛物线交于两点,求的面积.
【答案】(1)x=0或y=1或y=x+1;(2) .
【解析】试题分析:
(1)求出,分类讨论,直线与抛物线方程联立,即可求解直线的方程;
(2)直线与抛物线联立,利用韦达定理,根据的面积,即可求解的面积.
试题解析:
(1)∵抛物线C:y2=2px(p>0)的焦点为F(1,0),抛物线E:x2=2py的焦点为M,
∴p=2,M(0,1)
斜率不存在时,x=0,满足题意;
斜率存在时,设方程为y=kx+1,代入y2=4x,可得k2x2+(2k﹣4)x+1=0,
k=0时,x=,满足题意,方程为y=1;
k≠0时,△=(2k﹣4)2﹣4k2=0,∴k=1,方程为y=x+1,
综上,直线l的方程为x=0或y=1或y=x+1;
(2)直线MF的方程为y=﹣x+1,代入y2=4x,可得y2+4y﹣4=0,
设A(x1,y1),B(x2,y2),则y1+y2=﹣4,y1y2=﹣4,
∴△OAB的面积S=|OF||y1﹣y2|==2.
练习册系列答案
相关题目