题目内容
【题目】已知正三棱锥D﹣ABC侧棱两两垂直,E为棱AD中点,平面α过点A,且α∥平面EBC,α∩平面ABC=m,α∩平面ACD=n,则m,n所成角的余弦值是 .
【答案】
【解析】解:∵α∥平面EBC,α∩平面ABC=m,平面EBC∩平面ABC=BC, ∴m∥BC,
同理可得:n∥CE,
∴∠BCE为直线m,n所成的角.
设正三棱锥的侧棱为1,则BC= ,CE=BE= ,
在△BCE中,由余弦定理得:cos∠BCE= = .
所以答案是: .
【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.
练习册系列答案
相关题目