题目内容
【题目】如图,四棱锥P-ABCD的底面ABCD是菱形,AC与BD交于点O,底面ABCD,点M为PC中点,,,.
(1)求异面直线AP与BM所成角的余弦值;
(2)求平面ABM与平面PAC所成锐二面角的余弦值.
【答案】(1);(2)
【解析】
(1)以为原点,,,方向为轴,轴,轴正方向,建立空间直角坐标系,再利用向量法即可求解;
(2)求出平面的一个法向量和平面的一个法向量,再利用向量法求解即可.
(1)因为是菱形,所以,又底面,
故以为原点,,,方向为轴,轴,轴正方向,建立如图所示空间直角坐标系,
则,0,,,1,,,0,,,0,,,0,,
所以,0,,,,,
,,
故直线与所成角的余弦值为;
(2),1,,,,,
设平面的一个法向量为,,,
则,令,得,4,,
又平面的一个法向量为,1,,
,
故平面与平面所成锐二面角的余弦值为.
【题目】某产品的三个质量指标分别为x, y, z, 用综合指标S =" x" + y + z评价该产品的等级. 若S≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:
产品编号 | A1 | A2 | A3 | A4 | A5 |
质量指标(x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
产品编号 | A6 | A7 | A8 | A9 | A10 |
质量指标(x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率;
(Ⅱ) 在该样品的一等品中, 随机抽取两件产品,
(1) 用产品编号列出所有可能的结果;
(2) 设事件B为 “在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.
【题目】政府工作报告指出,2018年我国深入实施创新驱动发展战略,创新能力和效率进一步提升;2019年要提升科技支撑能力,健全以企业为主体的产学研一体化创新机制.某企业为了提升行业核心竞争力,逐渐加大了科技投入;该企业连续6年来的科技投入(百万元)与收益(百万元)的数据统计如下:
科技投入 | 2 | 4 | 6 | 8 | 10 | 12 |
收益 |
根据散点图的特点,甲认为样本点分布在指数曲线的周围,据此他对数据进行了一些初步处理,如下表:
其中,.
(1)(i)请根据表中数据,建立关于的回归方程(保留一位小数);
(ii)根据所建立的回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中)?
(2)乙认为样本点分布在二次曲线的周围,并计算得回归方程为,以及该回归模型的相关指数,试比较甲、乙两位员工所建立的模型,谁的拟合效果更好.
附:对于一组数据,,…,,其回归直线方程的斜率和截距的最小二乘估计分别为,,相关指数:.