题目内容
17.求下列函数定积分.(1)已知f(x)=4x3+4sinx,求${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$f(x)dx;
(2)已知f(x)=$\left\{\begin{array}{l}{{x}^{2},(x≤0)}\\{cosx-1,(x>0)}\end{array}\right.$,求${∫}_{-1}^{1}$f(x)dx.
分析 (1)由和的积分等于积分的和展开,然后求出被积函数的原函数,直接由微积分基本定理得答案;
(2)把积分区间分段,然后求出被积函数的原函数,再由微积分基本定理得答案.
解答 解:(1)由于f(x)=4x3+4sinx,
则${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$f(x)dx=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(4x3+4sinx)dx
=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$4x3dx+${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$4sinxdx
=(x4)${|}_{-\frac{π}{2}}^{\frac{π}{2}}$+(-4cosx)${|}_{-\frac{π}{2}}^{\frac{π}{2}}$
=$(\frac{π}{2})^{4}-(-\frac{π}{2})^{4}$+$(-4cos\frac{π}{2})-(-4cos(-\frac{π}{2}))$
=0;
(2)由于f(x)=$\left\{\begin{array}{l}{{x}^{2},(x≤0)}\\{cosx-1,(x>0)}\end{array}\right.$,
则${∫}_{-1}^{1}$f(x)dx=${∫}_{-1}^{0}$x2dx+${∫}_{0}^{1}$(cosx-1)dx
=$(\frac{1}{3}{x}^{3}){|}_{-1}^{0}$+$(sinx-x){|}_{0}^{1}$
=0+$\frac{1}{3}$+sin1-1-0
=sin1-$\frac{2}{3}$.
点评 本题考查了定积分的计算,考查了微积分基本定理,关键是求出原函数,属于基础题.