题目内容

15.函数f(x)=$\frac{x}{{x}^{2}+x+1}$的值域是(  )
A.[-1,$\frac{1}{3}$)B.(-1,$\frac{1}{3}$]C.(-1,$\frac{1}{3}$)D.[-1,$\frac{1}{3}$]

分析 利用判别式法进行求解即可.

解答 解:∵x2+x+1=(x+$\frac{1}{2}$)2+$\frac{3}{4}$>0恒成立,
∴函数的定义域为(-∞,+∞),
由y=$\frac{x}{{x}^{2}+x+1}$得y(x2+x+1)=x,
即yx2+(y-1)x+y=0,
当y=0时,x=0,
当y≠0时,由判别式△=(y-1)2-4y2≥0,
得3y2+2y-1≤0,
即-1≤y≤$\frac{1}{3}$且y≠0,
综上-1≤y≤$\frac{1}{3}$,
故选:D.

点评 本题主要考查函数值域的求解,利用判别式法,结合一元二次方程根与判别式之间的关系是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网