题目内容
10.直线y=kx-2交抛物线y2=x于A、B两点,(1)求k的取值范围;(2)若AB的中点横坐标为2,求|AB|的值.分析 (1)由直线与抛物线有两个交点,得到方程组有两个不同的解,利用判别式大于0求k 的范围.
(2)由$\left\{\begin{array}{l}{{y}^{2}=x}\\{y=kx-2}\end{array}\right.$,得ky2-y-2=0,再由根的判别式和韦达定理进行求解.
解答 解:(1)由$\left\{\begin{array}{l}{{y}^{2}=x}\\{y=kx-2}\end{array}\right.$,得ky2-y-2=0,直线与抛物线有两个交点,则k≠0,△=1+8k>0,解之k>$-\frac{1}{8}$且k≠0;
(2)由$\left\{\begin{array}{l}{{y}^{2}=x}\\{y=kx-2}\end{array}\right.$,得ky2-y-2=0,
设A(x1,y1),B(x2,y2),则k≠0,且1+8k>0,即k>-$\frac{1}{8}$且k≠0;
由韦达定理得:x1+x2=$\frac{1}{k}$,$\frac{{x}_{1}+{x}_{2}}{2}$=2,所以$\frac{1}{k}=4$,即k=$\frac{1}{4}$,$\sqrt{1+\frac{1}{16}}\sqrt{{4}^{2}+4×8}$=$\sqrt{51}$,
则|AB|=$\sqrt{1+\frac{1}{16}}\sqrt{{4}^{2}+4×8}$=$\sqrt{51}$.
点评 本题考查直线和圆锥曲线的位置关系的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目
20.点P是底边长为2$\sqrt{3}$,高为2的正三棱柱表面上的动点,Q是该棱柱内切球表面上的动点,则|PQ|的取值范围是( )
A. | [0,$\sqrt{3}+1$] | B. | [0,$\sqrt{5}+1$] | C. | [0,3] | D. | [1,$\sqrt{5}+1$] |
1.周长为6,圆心角弧度为1的扇形面积等于( )
A. | 1 | B. | $\frac{3π}{2}$ | C. | π | D. | 2 |
18.命题“?x∈R,x2-x+1>0”的否定是( )
A. | ?x0∈R x02-x0+1<0 | B. | ?x0∈R x02-x0+1≤0 | ||
C. | ?x∈R x2-x+1<0 | D. | ?x∈R x2-x+1≤0 |
5.一元二次方程x2+2x+m=0有实数解的一个必要不充分条件为( )
A. | m<1 | B. | m≤1 | C. | m≥1 | D. | m<2 |
15.函数f(x)=$\frac{x}{{x}^{2}+x+1}$的值域是( )
A. | [-1,$\frac{1}{3}$) | B. | (-1,$\frac{1}{3}$] | C. | (-1,$\frac{1}{3}$) | D. | [-1,$\frac{1}{3}$] |
2.两条异面直线互成60°,过空间中任一点A可以作出几个平面与两异面直线都成45°角.( )
A. | 一个 | B. | 两个 | C. | 三个 | D. | 四个 |