题目内容
【题目】设函数, 已知曲线y=f(x)
在处的切线与直线垂直。
(1) 求的值;
(2) 若对任意x≥1,都有,求的取值范围.
【答案】(1) b=1(2) (,--1)∪(-1,1)
【解析】试题分析:(1)求出函数导数,由两直线垂直斜率之积为-1,解方程可得
(2)求出导数,对 讨论,①若 ,则 ;②若
,则 ;③若 三种情况分别求出单调区间,可得最小值,解不等式即可得到所求范围.
试题解析:(1)曲线y=f(x)在点(1,f(1))处的切线斜率为2,所以f′(1)=2,又f′(x)=ln x++1,即ln 1+b+1=2,所以b=1.
(2) g(x)的定义域为(0,+∞),
g′(x)=+(1-a)x-1=(x-1).
①若a≤,则≤1,故当x∈(1,+∞)时,g′(x)>0,g(x)在(1,+∞)上单调递增. 所以,对任意x≥1,都有g(x) >的充要条件为g(1) >,即-1>,解得a<--1或-1 <a≤
②若<a<1,则>1,故当x∈时,g′(x)<0;当x∈时,g′(x)>0.f(x)在上单调递减,在上单调递增.
所以,对任意x≥1,都有g(x) >的充要条件为g>.而g=aln++>在<a<1上恒成立,
所以<a<1
③若a>1,g(x)在[1,+∞)上递减,不合题意。
综上,a的取值范围是(,--1)∪(-1,1)
练习册系列答案
相关题目