题目内容

【题目】如图,AB是圆O的直径,AC是弦,∠BAC的平分线AD交圆O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是圆O的切线;
(2)若∠CAB=60°,⊙O的半径为2,EC=1,求DE的值.

【答案】
(1)证明:连接OD,

∵AB是圆O的直径,AC是弦,∠BAC的平分线AD交圆O于点D,

∴∠ODA=∠OAD=∠DAC,∴OD∥AE,

又AE⊥DE,∴DE⊥OD,又OD为半径,

∴DE是圆O的切线


(2)解:连结BC,在Rt△ABC中,∠CAB=60°,AB=4,

∴AC=ABcos60°=2…(7分)

又∵EC=1,∴AE=EC+CA=3,

由圆的切割线定理得:

DE2=CEEA=3,∴


【解析】(1)连接OD,由已知得∠ODA=∠OAD=∠DAC,从而OD∥AE,由此能证明DE是圆O的切线.(2)连结BC,由已知得AC=2,AE=EC+CA=3,由此利用圆的切割线定理能求出DE的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网