题目内容

如图,在梯形ABCD中,ABC,AD=DC=CB=1,∠ABC═60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若点M在线段EF上运动,设平MAB与平FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.
(1)证明:在梯形ABCD中,∵ABCD,AD=DC=CB=1,∠ABC=60°,
∴AB=2,AC2=AB2+BC2-2AB•BC•cos60°=3,
∴AB2=AC2+BC2,∴BC⊥AC,
∵平面ACFE⊥平面ABCD,
平面ACFE∩平面ABCD=AC,BC?平面ABCD,
∴BC⊥平面ACFE.
(2)取FB中点G,连接AG,CG,
∵AF=
AC2+CF2
=2,∴AB=AF,∴AG⊥FB,
∵CF=CB=1,∴CG⊥FB,∴∠AGC=θ,
∵BC=CF,∴FB=
2
,∴CG=
2
2
,AG=
14
2

∴cosθ=
CG2+AG2-AC2
2CG•AG
=
7
7

(3)由(2)知:
①当M与F重合时,cosθ=
7
7

②当M与E重合时,过B作BNCF,且使BN=CF,
连接EN,FN,则平面MAB∩平面FCB,
∵BC⊥CF,AC⊥CF,∴CF⊥平面ABC,∴BN⊥平面ABC,
∴∠ABC=θ,∴θ=60°,∴cosθ=
1
2

③当M与E,F都不重合时,令FM=λ,0<λ<
3

延长AM交CF的延长线于N,连接BN,
∴N在平面MAB与平面FCB的交线上,
∵B在平面MAB与平面FCB的交线上,
∴平面MAB∩平面FCB=BN,
过C作CH⊥NB交NB于H,连接AH,
由(1)知,AC⊥BC,
又∵AC⊥CN,∴AC⊥平面NCB,∴AC⊥NB,
又∵CH⊥NB,AC∩CH=C,∴NB⊥平面ACH,
∴AH⊥NB,∴∠AHC=θ,
在△NAC中,NC=
3
3

从而在△NCB中,CH=
3
(λ-
3
)2+3

∵∠ACH=90°,∴AH=
AC2+CH2
=
3
(λ-
3
)2+4
(λ-
3
)2+3

∴cosθ=
CH
AH
=
1
(λ-
3
)2+4

∵0<λ<
3

7
7
<cosθ<
1
2

综上所述,cosθ∈[
7
7
1
2
].
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网