题目内容
【题目】某矩形花坛ABCD长AB=3m,宽AD=2m,现将此花坛在原有基础上有拓展成三角形区域,AB、AD分别延长至E、F并使E、C、F三点共线.
(1)要使三角形AEF的面积大于16平方米,则AF的长应在什么范围内?
(2)当AF的长度是多少时,三角形AEF的面积最小?并求出最小面积.
【答案】
(1)解:设DF=x,AF=x+2,
∵△FDC∽△CBE,
∴ = ,
∴BE= ,
∴S△AEF= (x+2)( +3)= (12+3x+ ),
∵三角形AEF的面积大于16平方米,
∴ (12+3x+ )>16,
∴(3x﹣2)(x﹣6)>0,
∴x>6或0<x< ,
∴2<AF< 或AF>8
(2)解: ,
当 ,即AF=4时取得最小
【解析】(1)由题意设出DF=x,AF=x+2,因为△FDC∽△CBE,则对应线段成比例可知BE,表示出三角形AEF的面积,令其大于16得到关于x的一元二次不等式,求出解集即可;(2)利用基本不等式得出函数的最小值即可.
【考点精析】利用基本不等式在最值问题中的应用对题目进行判断即可得到答案,需要熟知用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.
练习册系列答案
相关题目
【题目】某网站针对2014年中国好声音歌手A,B,C三人进行网上投票,结果如下:
观众年龄 | 支持A | 支持B | 支持C |
20岁以下 | 200 | 400 | 800 |
20岁以上(含20岁) | 100 | 100 | 400 |
(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分层抽样的方法抽取6人作为一个总体,从这6人中任意选取2人,求恰有1人在20岁以下的概率.