题目内容

【题目】在△ABC中,内角A、B、C的对边分别是a、b、c,且b2+c2﹣a2=bc.
(1)求A;
(2)若a= ,sinBsinC=sin2A,求△ABC的周长.

【答案】
(1)解:△ABC中,b2+c2﹣a2=bc,

∴cosA= = =

又A∈(0,π),

∴A=


(2)解:∵a= ,sinBsinC=sin2A,

∴bc=a2=2①;

又b2+c2﹣a2=bc,

∴b2+c2﹣2=bc②;

由①②组成方程组,解得b=c=

∴△ABC的周长为l=a+b+c=3


【解析】(1)由余弦定理求出cosA的值,即得A的值;(2)由正弦定理化sinBsinC=sin2A为bc=a2①,再由b2+c2﹣a2=bc②;列出方程组求出b、c的值,即得△ABC的周长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网