题目内容

【题目】某网站针对2014年中国好声音歌手A,B,C三人进行网上投票,结果如下:

观众年龄

支持A

支持B

支持C

20岁以下

200

400

800

20岁以上(含20岁)

100

100

400

(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分层抽样的方法抽取6人作为一个总体,从这6人中任意选取2人,求恰有1人在20岁以下的概率.

【答案】解:(1)∵利用层抽样的方法抽取n个人时,从“支持A方案”的人中抽取了6人,

解得n=40;
(2)从“支持C方案”的人中,用分层抽样的方法抽取的6人中,
年龄在20岁以下的有4人,分别记为1,2,3,4,年龄在20岁以上(含20岁)的有2人,记为a,b,
则这6人中任意选取2人,共有=15种不同情况,
分别为:(1,2),(1,3),(1,4),(1,a),(1,b),(2,3),(2,4),(2,a),(2,b),(3,4),(3,a),(3,b),(4,a),(4,b),(a,b),
其中恰好有1人在20岁以下的事件有:
(1,a),(1,b),(2,a),(2,b),(3,a),(3,b),(4,a),(4,b)共8种.
故恰有1人在20岁以下的概率P=
【解析】(1)根据分层抽样时,各层的抽样比相等,结合已知构造关于n的方程,解方程可得n值.
(2)计算出这6人中任意选取2人的情况总数,及满足恰有1人在20岁以下的情况数,代入古典概率概率计算公式,可得答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网