题目内容
【题目】某网站针对2014年中国好声音歌手A,B,C三人进行网上投票,结果如下:
观众年龄 | 支持A | 支持B | 支持C |
20岁以下 | 200 | 400 | 800 |
20岁以上(含20岁) | 100 | 100 | 400 |
(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分层抽样的方法抽取6人作为一个总体,从这6人中任意选取2人,求恰有1人在20岁以下的概率.
【答案】解:(1)∵利用层抽样的方法抽取n个人时,从“支持A方案”的人中抽取了6人,
∴,
解得n=40;
(2)从“支持C方案”的人中,用分层抽样的方法抽取的6人中,
年龄在20岁以下的有4人,分别记为1,2,3,4,年龄在20岁以上(含20岁)的有2人,记为a,b,
则这6人中任意选取2人,共有=15种不同情况,
分别为:(1,2),(1,3),(1,4),(1,a),(1,b),(2,3),(2,4),(2,a),(2,b),(3,4),(3,a),(3,b),(4,a),(4,b),(a,b),
其中恰好有1人在20岁以下的事件有:
(1,a),(1,b),(2,a),(2,b),(3,a),(3,b),(4,a),(4,b)共8种.
故恰有1人在20岁以下的概率P=.
【解析】(1)根据分层抽样时,各层的抽样比相等,结合已知构造关于n的方程,解方程可得n值.
(2)计算出这6人中任意选取2人的情况总数,及满足恰有1人在20岁以下的情况数,代入古典概率概率计算公式,可得答案.
【题目】一汽车厂生产A、B、C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):
轿车A | 轿车B | 轿车C | |
舒适型 | 100 | 150 | z |
标准型 | 300 | 450 | 600 |
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.