题目内容
4.若数列{an}满足a1=$\frac{1}{2},{a_{n+1}}=a_n^2+{a_n}$,n∈N+,且bn=$\frac{1}{{1+{a_n}}}$,Pn=b1•b2…bn,Sn=b1+b2+…+bn,则2Pn+Sn=2.分析 由已知数列递推式得到${b}_{n}=\frac{1}{1+{a}_{n}}=\frac{{a}_{n}}{{a}_{n+1}}$,及${b}_{n}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$,然后通过累积和累加分别求得Pn、Sn,作和后得答案.
解答 解:由${a}_{n+1}={{a}_{n}}^{2}+{a}_{n}$,得${a}_{n+1}-{a}_{n}={{a}_{n}}^{2}>0$,∴数列是增数列,
并且$\frac{1}{{a}_{n}}$>0,
又∵${a}_{n+1}={{a}_{n}}^{2}+{a}_{n}$,即an+1=an(1+an),
∴${b}_{n}=\frac{1}{1+{a}_{n}}=\frac{{a}_{n}}{{a}_{n+1}}$,
又由${a}_{n+1}={{a}_{n}}^{2}+{a}_{n}$,
∴$\frac{1}{{a}_{n}}=\frac{1}{{a}_{n+1}}+\frac{{a}_{n}}{{a}_{n+1}}=\frac{1}{{a}_{n+1}}+{b}_{n}$,
∴${b}_{n}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$,
∴${S}_{n}={b}_{1}+{b}_{2}+…+{b}_{n}=\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}+\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}}+$…$+\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{n+1}}$.
Pn=b1•b2…bn=$\frac{{a}_{1}}{{a}_{2}}•\frac{{a}_{2}}{{a}_{3}}…\frac{{a}_{n}}{{a}_{n+1}}=\frac{{a}_{1}}{{a}_{n+1}}$.
∴$2{P}_{n}=2\frac{{a}_{1}}{{a}_{n+1}}=\frac{1}{{a}_{n+1}}$.
∴2Pn+Sn=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{n+1}}+\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{1}}=2$.
故答案为:2.
点评 本题考查了数列递推式,考查了累加法和累积法求数列的通项公式,是中档题.
A. | e+$\frac{1}{{e}^{2}}$ | B. | e2+$\frac{1}{e}$ | C. | e2+$\frac{1}{{e}^{2}}$ | D. | e+$\frac{1}{e}$ |
分组 | 频数 | 频率 |
[40,50) | 6 | 0.12 |
[50,60) | 8 | 0.16 |
[60,70) | 12 | 0.24 |
[70,80) | ||
[80,90) | 4 | 0.08 |
[90,100] | 2 | 0.04 |
合计 |
(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ)从成绩是80分以上(含80分)的学生中选两名,求他们在同一分数段的概率.