题目内容
【题目】已知两直线l1:mx+8y+n=0和l2:2x+my-1=0.试确定m,n的值,使
(1)l1与l2相交于点P(m,-1);则m=____,n=_______
(2)l1∥l2.则_________________
【答案】 1. 7. .
【解析】
(1)将点P(m,﹣1)代入两直线方程,解出m和n的值.
(2)由 l1∥l2得斜率相等,求出 m 值,再把直线可能重合的情况排除.
(1)将点P(m,﹣1)代入两直线方程得:m2﹣8+n=0 和 2m﹣m﹣1=0,
解得 m=1,n=7.
(2)由 l1∥l2 得:m2﹣8×2=0,m=±4,
又两直线不能重合,所以有 8×(﹣1)﹣mn≠0,对应得 n≠2m,
所以当 m=4,n≠﹣2 或 m=﹣4,n≠2 时,l1∥l2.
【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合计 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户
求抽取的6名用户中,男女用户各多少人;
② 从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率.
(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?
P(χ2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | .635 |
非移动支付活跃用户 | 移动支付活跃用户 | 合计 | |
男 | |||
女 | |||
合计 |
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班48人进行了问卷调查得到了如下的2×2列联表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 6 | ||
女生 | 10 | ||
合计 | 48 |
已知在全班48人中随机抽取1人,抽到喜爱打篮球的学生的概率为.
(1)请将上面的2×2列联表补充完整;(不用写计算过程)
(2)能否在犯错误的概率不超过0.05的前提下认为喜爱打篮球与性别有关?说明你的理由.
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)