题目内容
【题目】已知函数()在处的切线与直线平行.
(1)求的值并讨论函数在上的单调性;
(2)若函数(为常数)有两个零点()
①求实数的取值范围;
②求证:
【答案】(1)见解析;(2)①;②见解析.
【解析】试题分析:(1)根据切线的斜率可知在处的导数,从而求出的值,再根据导数的正负讨论函数的单调区间即可;(2)①根据函数有两个零点知,函数的最小值要小于0即可求出;②设,构造函数(),利用导数确定函数单调性,再根据即可求证.
试题解析:
(1),
,∴.
∴
令,
则
∴时, ; 时, .
则在上单调递增,在上单调递减.
∴在时, ,
即时, ,
∴函数在上单调递减.
(2)①由条件可知, ,
则
∴在上单调递减,在上单调递增;
要使函数有两个零点,则
∴.
②证明:由①可知,∴,
又是两个零点
∴
令()
则,
∴
即
又在上单调递减,
∴,即
【题目】“双十一”期间,某淘宝店主对其商品的上架时间(小时)和销售量(件)的关系作了统计,得到了如下数据并研究.
上架时间 | 2 | 4 | 6 | 8 | 10 | 12 |
销售量 | 64 | 138 | 205 | 285 | 360 | 430 |
(1)求表中销售量的平均数和中位数;
(2)① 作出散点图,并判断变量与是否线性相关?若研究的方案是先根据前5组数据求线性回归方程,再利用第6组数据进行检验,求线性回归方程;
②若根据①中线性回归方程得到商品上架12小时的销售量的预测值与检测值不超过3件,则认为得到的线性回归方程是理想的,试问:①中的线性回归方程是否理想.
附:线性回归方程中, .
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
记x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.
(1)若=10,求y与x的函数解析式;
(2)若要求“维修次数不大于”的频率不小于0.8,求n的最小值;
(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?