题目内容
已知椭圆![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145604860.png)
的右焦点为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145635302.png)
,短轴的端点分别为
,且
.
(1)求椭圆
的方程;
(2)过点
且斜率为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145713312.png)
的直线
交椭圆于
两点,弦
的垂直平分线与
轴相交于点
.设弦
的中点为
,试求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145604860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145620582.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145635302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145651434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145666453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145682659.png)
(1)求椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145698313.png)
(2)过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145635302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145713312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145729493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145744280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145760550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145760513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145791266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145791315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145760513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145822289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145838706.png)
(1)
;(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145869505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145854709.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145869505.png)
试题分析:(1)由椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145604860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145900619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145635302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145932431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145994304.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145666453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145682659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146025283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146041299.png)
(2)由(1)可得假设直线AB的方程联立椭圆方程消去y即可得到一个关于x的二次方程,由韦达定理得到根与直线斜率k的关系式.写出线段AB的中点坐标以及线段AB的垂直平分线的方程.即可得到点D的坐标.即可求得线段PD的长,根据弦长公式可得线段MN的长度,再通过最的求法即可得结论.
试题解析:(1)依题意不妨设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146056595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146072586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146088690.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146088678.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145682659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146119492.png)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146134505.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146150628.png)
所以椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145698313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145854709.png)
(2)依题意直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145744280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146197610.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441462121168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441462281067.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146244700.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146259675.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146275913.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146290954.png)
所以弦
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145760513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441463221055.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441463372078.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441463681630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146384835.png)
直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146384365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441464001220.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146415391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146446720.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146446875.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441464621130.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441464782252.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146509715.png)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146524496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146524623.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146540892.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145838706.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044145869505.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目