题目内容
【题目】若函数在上是单调函数,则a的取值范围是( )
A.B.
C.D.
【答案】B
【解析】
由求导公式和法则求出f′(x),由条件和导数与函数单调性的关系分类讨论,分别列出不等式进行分离常数,再构造函数后,利用整体思想和二次函数的性质求出函数的最值,可得a的取值范围.
解:由题意得,f′(x),
因为在[1,+∞)上是单调函数,
所以f′(x)≥0或f′(x)≤0在[1,+∞)上恒成立,
①当f′(x)≥0时,则在[1,+∞)上恒成立,
即a,设g(x),
因为x∈[1,+∞),所以∈(0,1],
当1时,g(x)取到最大值是:0,
所以a≥0,
②当f′(x)≤0时,则在[1,+∞)上恒成立,
即a,设g(x),
因为x∈[1,+∞),所以∈(0,1],
当时,g(x)取到最大值是:,
所以a,
综上可得,a或a≥0,
所以数a的取值范围是(﹣∞,]∪[0,+∞),
故选:B.
练习册系列答案
相关题目