题目内容
【题目】在某企业中随机抽取了5名员工测试他们的艺术爱好指数和创新灵感指数,统计结果如下表(注:指数值越高素质越优秀):
(1)求创新灵感指数关于艺术爱好指数的线性回归方程;
(2)企业为提高员工的艺术爱好指数,要求员工选择音乐和绘画中的一种进行培训,培训音乐次数对艺术爱好指数的提高量为,培训绘画次数对艺术爱好指数的提高量为,其中为参加培训的某员工已达到的艺术爱好指数.艺术爱好指数已达到3的员工甲选择参加音乐培训,艺术爱好指数已达到4的员工乙选择参加绘画培训,在他们都培训了20次后,估计谁的创新灵感指数更高?
参考公式:回归方程中,,.
参考数据:,
【答案】(1)(2)培训后乙的创新灵感指数更高
【解析】
(1)先求得,再根据提供的数据,求得,写出回归直线方程.
(2)根据培训音乐次数对艺术爱好指数的提高量为,培训绘画次数对艺术爱好指数的提高量为,分别得到员工甲经过20次的培训后,他们的艺术爱好指数,再估计他们的创新灵感指数,比较即可.
(1)设,有,
,
.
(2)员工甲经过20次的培训后,
估计他的艺术爱好指数将达到,
因此估计他的创新灵感指数为.
员工乙经过20次的培训后,
估计他的艺术爱好指数将达到,
因此估计他的创新灵感指数为.
由于,故培训后乙的创新灵感指数更高.
【题目】已知函数的定义域为[-1,5],部分对应值如下表, 的导函数的图象如图所示,下列关于的命题:
-1 | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
①函数的极大值点为0,4;
②函数在[0,2]上是减函数;
③如果当时, 的最大值是2,那么t的最大值为4;
④当1<a<2时,函数有4个零点.
其中正确命题的序号是__________.
【题目】某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:
分组 | 频数 | 频率 |
① | ② | |
36 | ||
12 | ③ | |
合计 | ④ |
(1)根据上面频率分布表,推出①,②,③,④处的数值分别为 , , , ;
(2)在所给的坐标系中画出区间上的频率分布直方图;
(3)根据题中信息估计总体:
(i)120分及以上的学生数;
(ii)平均分;
(iii)成绩落在中的概率.
【题目】10月1日,某品牌的两款最新手机(记为型号,型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表:
手机店 |
|
|
|
|
|
型号手机销量 | 6 | 6 | 13 | 8 | 11 |
型号手机销量 | 12 | 9 | 13 | 6 | 4 |
(Ⅰ)若在10月1日当天,从,这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为型号手机的概率;
(Ⅱ)现从这5个手机店中任选3个举行促销活动,用
(III)经测算,型号手机的销售成本(百元)与销量(部)满足关系.若表中型号手机销量的方差,试给出表中5个手机店的型号手机销售成本的方差的值.(用表示,结论不要求证明)