题目内容

【题目】给出下列四个命题:
①三点确定一个平面;
②三条两两相交的直线确定一个平面;
③在空间上,与不共面四点A,B,C,D距离相等的平面恰有7个;
④两个相交平面把空间分成四个区域.
其中真命题的序号是 (写出所有真命题的序号).

【答案】③④
【解析】解:对于①,不在同一直线上的三点确定一个平面,∴①错误;
对于②,不共点的三条两两相交的直线确定一个平面,∴②错误;
对于③,空间四点A、B、C、D不共面时,则四点构成一个三棱锥,如图:

当平面一侧有一点,另一侧有三点时,令截面与四棱锥的四个面之一平行,第四个顶点到这个截面的距离与其相对的面到此截面的距离相等,这样的平面有4个,
当平面一侧有两点,另一侧有两点时,即过相对棱的异面直线公垂线段的中点,且和两条相对棱平行的平面,满足条件.因三棱锥的相对棱有三对,则此时满足条件的平面个数是3个,
所以满足条件的平面恰有7个,③正确;
对于④,两个相交平面把空间分成四个区域是真命题,∴④正确.
综上,正确的命题序号是③④.
所以答案是:③④.
【考点精析】本题主要考查了平面的基本性质及推论的相关知识点,需要掌握如果一条直线上的两点在一个平面内,那么这条直线在此平面内;过不在一条直线上的三点,有且只有一个平面;如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网