题目内容
4.如图,三棱锥A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=2,则该三棱锥的侧视图(投影线平行于BD)的面积为$\sqrt{2}$.分析 判断左视图的特征,利用几何体的数据求解面积即可.
解答 解:由三视图可知,左视图是直角三角形,直角边长为:2,$\sqrt{2}$;
左视图的面积为:$\frac{1}{2}×2×\sqrt{2}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题考查解得几何体的三视图,考查空间想象能力以及计算能力.
练习册系列答案
相关题目
16.在$\frac{1-cosα}{1+cosα}$=α中,α的取值范围是( )
A. | α<-1 | B. | α≥0 | C. | α>-1 | D. | α<0 |
12.已知函数f(x)=$\sqrt{3}$sin(2x+φ),若f(α)=$\sqrt{3}$,则( )
A. | f(α+$\frac{5π}{6}$)>f(α+$\frac{π}{12}$) | B. | f(α+$\frac{5π}{6}$)<f(α+$\frac{π}{12}$) | C. | f(α+$\frac{5π}{6}$)=f(α+$\frac{π}{12}$) | D. | 大小与α,φ有关 |
9.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
(1)求这6件样品中来自A,B,C各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
(3)若在B,C两地区的5件样品中随机抽取3件进行进一步检测,求这3件商品恰有1件来自C地区的概率.
地区 | A | B | C |
数量 | 50 | 150 | 100 |
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
(3)若在B,C两地区的5件样品中随机抽取3件进行进一步检测,求这3件商品恰有1件来自C地区的概率.
14.若曲线C1:x2+y2-2x=0与曲线C2:x(y-mx-m)=0有三个不同的公共点,则实数m的取值范围是( )
A. | (0,$\sqrt{3}$) | B. | (-$\sqrt{3}$,0)∪(0,$\sqrt{3}$) | C. | (0,$\frac{{\sqrt{3}}}{3}$) | D. | (-$\frac{{\sqrt{3}}}{3}$,0)∪(0,$\frac{{\sqrt{3}}}{3}$) |