题目内容
(本小题共14分)
已知椭圆C:,左焦点,且离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C交于不同的两点(不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A. 求证:直线过定点,并求出定点的坐标.
已知椭圆C:,左焦点,且离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C交于不同的两点(不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A. 求证:直线过定点,并求出定点的坐标.
(1) (2) 直线过定点,且定点的坐标为
试题分析:解:(Ⅰ)由题意可知: ……1分
解得 ………2分
所以椭圆的方程为: ……3分
(II)证明:由方程组 …4分
整理得 ………..5分
设
则 …….6分
由已知,且椭圆的右顶点为 ………7分
……… 8分
即
也即 …… 10分
整理得: ……11分
解得均满足 ……12分
当时,直线的方程为,过定点(2,0)与题意矛盾舍去……13分
当时,直线的方程为,过定点
故直线过定点,且定点的坐标为 …….14分
点评:解决的关键是熟练的根据椭圆的性质来得到椭圆的方程,同时能结合联立方程组的思想来,韦达定理和垂直关系,得到直线方程,进而求解。属于基础题。
练习册系列答案
相关题目