题目内容

19.设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命题“?t∈R,A∩B≠∅”是真命题,则实数a的取值范围是(  )
A.[1,4]B.[0,$\frac{4}{3}$]C.[0,$\frac{1}{2}$]D.(-∞,0]∪($\frac{4}{3}$,+∞]

分析 首先要将条件进行转化,即命题P:A∩B≠∅为假命题,再结合集合A、B的特征利用数形结合即可获得必要的条件,解不等式组即可获得问题的解答.

解答 解:∵A={(x,y)|(x-4)2+y2=1},表示平面坐标系中以M(4,0)为圆心,半径为1的圆,

B={(x,y)|(x-t)2+(y-at+2)2=1},表示以N(t,at-2)为圆心,半径为1的圆,且其圆心N在直线ax-y-2=0上,如图.
如果命题“?t∈R,A∩B≠∅”是真命题,即两圆有公共点,则圆心M到直线ax-y-2=0的距离不大于2,
即 $\frac{|4a-2|}{\sqrt{{a}^{2}+1}}$≤2,解得0≤a≤$\frac{4}{3}$.
∴实数a的取值范围是[0,$\frac{4}{3}$];
故选:B.

点评 本题考查的是集合运算和命题的真假判断与应用的综合类问题.在解答的过程当中充分体现了圆的知识、集合运算的知识以及命题的知识.同时问题转化的思想也在此题中得到了很好的体现.值得同学们体会和反思.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网