题目内容

14.已知函数f(x)=sinxcosx+$\sqrt{3}{sin^2}x-\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)求f(x)的单调递增区间.

分析 (Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得:f(x)=$sin(2x-\frac{π}{3})$,由周期公式可求函数f(x)的最小正周期,利用正弦函数的图象和性质即可求得最大值.
(Ⅱ)由$2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2}$,即可求得函数f(x)的单调增区间.

解答 (本小题满分13分)
解:(Ⅰ)$f(x)=\frac{1}{2}sin2x+\frac{{\sqrt{3}}}{2}(1-cos2x)-\frac{{\sqrt{3}}}{2}$…(4分)
=$\frac{1}{2}sin2x-\frac{{\sqrt{3}}}{2}cos2x$=$sin(2x-\frac{π}{3})$,…(6分)
所以函数f(x)的最小正周期为π.…(7分)
当$2x-\frac{π}{3}=\frac{π}{2}+2kπ,k∈{Z}$,即$x=\frac{5π}{12}+kπ,k∈{Z}$时取得最大值为1.…(9分)
(Ⅱ)令 $2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2}$,
得 $kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12},k∈Z$.
故函数f(x)的单调增区间为$[kπ-\frac{π}{12},kπ+\frac{5π}{12}],k∈Z$. …(13分)

点评 本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网