题目内容
(13分) 已知椭圆C的中心在原点,离心率等于
,它的一个短轴端点点恰好是抛物线
的焦点。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321077233508.jpg)
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为
,求四边形APBQ面积的最大值;
②当A、B运动时,满足
=
,试问直线AB的斜率是否为定值,请说明理由。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107692338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107708662.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321077233508.jpg)
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107692338.png)
②当A、B运动时,满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107755537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107770516.png)
试题分析:(1)根据离心率等于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107692338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107708662.png)
(2)设出直线AB的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系,求得四边形APBQ的面积,从而可求四边形APBQ面积的最大值;
(3)设直线PA的斜率为k,则PB的斜率为-k,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系,即可求得得出AB的斜率为定值.
试题解析:(1)设C方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107801766.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107817521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107848497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107848549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107864371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107879756.png)
(2)①设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107895300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107911300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107926334.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107926331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107942369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107957625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107879756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107989697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108082223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108113267.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107911300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107926331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108160280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107911300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107926331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108191455.png)
四边形APBQ的面积
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108207842.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108223665.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108238363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108254687.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107755537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107770516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108301312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108301312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108332713.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107879756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108363686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108379710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108394771.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107911300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108488896.png)
同理2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107926331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108519896.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107911300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107926331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108566835.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107911300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032107926331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108597706.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108613820.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032108628960.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目