搜索
题目内容
是以原点
为中心,焦点在
轴上的等轴双曲线在第一象限部分,曲线
在点P处的切线分别交该双曲线的两条渐近线于
两点,则( )
A.
B.
C.
D.
试题答案
相关练习册答案
D
试题分析:设过点
的切线为
,∴
,消
得:
,
即
,∴
,∴
,
∵
,∴
,∵
,∴
,
∴
,
,∴
为
中点,
,∴
.
练习册系列答案
桂壮红皮书假期生活寒假作业系列答案
和谐假期云南科技出版社系列答案
快乐寒假广西师范大学出版社系列答案
学习与探究寒假学习系列答案
高中新课程评价与检测寒假作业系列答案
波波熊寒假作业江西人民出版社系列答案
新坐标寒假作业系列答案
星空初中假期作业寒假乐园新疆青少年出版社系列答案
寒假作业贵州人民出版社系列答案
寒假作业内蒙古大学出版社系列答案
相关题目
抛物线
,其准线方程为
,过准线与
轴的交点
做直线
交抛物线于
两点.
(1)若点
为
中点,求直线
的方程;
(2)设抛物线的焦点为
,当
时,求
的面积.
已知点
,
,动点
满足
.
(1)求动点
的轨迹
的方程;
(2)在直线
:
上取一点
,过点
作轨迹
的两条切线,切点分别为
.问:是否存在点
,使得直线
//
?若存在,求出点
的坐标;若不存在,请说明理由.
如图,设F(-c,0)是椭圆
的左焦点,直线l:x=-
与x轴交于P点,MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点P的直线m与椭圆相交于不同的两点A,B。
①证明:∠AFM=∠BFN;
②求△ABF面积的最大值。
已知椭圆C的左、右焦点分别为
,椭圆的离心率为
,且椭圆经过点
.
(1)求椭圆C的标准方程;
(2)线段
是椭圆过点
的弦,且
,求
内切圆面积最大时实数
的值.
(13分) 已知椭圆C的中心在原点,离心率等于
,它的一个短轴端点点恰好是抛物线
的焦点。
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为
,求四边形APBQ面积的最大值;
②当A、B运动时,满足
=
,试问直线AB的斜率是否为定值,请说明理由。
已知椭圆
:
.
(1)椭圆
的短轴端点分别为
(如图),直线
分别与椭圆
交于
两点,其中点
满足
,且
.
①证明直线
与
轴交点的位置与
无关;
②若∆
面积是∆
面积的5倍,求
的值;
(2)若圆
:
.
是过点
的两条互相垂直的直线,其中
交圆
于
、
两点,
交椭圆
于另一点
.求
面积取最大值时直线
的方程.
已知两点
及
,点
在以
、
为焦点的椭圆
上,且
、
、
构成等差数列.
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图,动直线
与椭圆
有且仅有一个公共点,点
是直线
上的两点,且
,
. 求四边形
面积
的最大值.
已知抛物线
与椭圆
有公共焦点
,且椭圆过点
.
(1)求椭圆方程;
(2)点
、
是椭圆的上下顶点,点
为右顶点,记过点
、
、
的圆为⊙
,过点
作⊙
的切线
,求直线
的方程;
(3)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点
、
,试问直线
是否经过定点,若是,求出定点坐标;若不是,说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总