ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖª¡÷ABCµÄÈý¸öÄÚ½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢c£¬ÏòÁ¿$\overrightarrow{m}$=£¨4£¬1£©£¬$\overrightarrow{n}$=£¨sin2$\frac{A}{2}$£¬cos2A£©£¬ÇÒ$\overrightarrow{m}$•$\overrightarrow{n}$=$\frac{1}{2}$£®£¨1£©Çó½ÇAµÄ´óС£»
£¨2£©Èô2bsinB=£¨2a-c£©sinA+£¨2c-a£©sinC£¬ÊÔÅжϡ÷ABCµÄÐÎ×´£®
·ÖÎö £¨1£©ÀûÓÃÒÑÖª¼ÆËã$\overrightarrow{m}$•$\overrightarrow{n}$£¬È»ºóÁîËüµÈÓÚ$\frac{1}{2}$£¬¿ÉÇóAµÄÖµ£®
£¨2£©ÓÉÕýÏÒ¶¨Àí»¯¼òÒÑÖªµÈʽ¿ÉµÃa2+c2-b2=ac£¬ÀûÓÃÓàÏÒ¶¨Àí¿ÉÇócosB£¬½áºÏ·¶Î§¿ÉÇóB£¬C£¬¼´¿ÉµÃ½â£®
½â´ð ½â£º£¨1£©ÓÉ$\overrightarrow{m}$=£¨4£¬1£©£¬$\overrightarrow{n}$=£¨sin2$\frac{A}{2}$£¬cos2A£©£¬
$\overrightarrow{m}$•$\overrightarrow{n}$=4sin2$\frac{A}{2}$+cos2A£¨1·Ö£©
=2-2cosA+cos2A
=2cos2A-2cosA+1£¨3·Ö£©
ÓÖÒòΪ$\overrightarrow{m}$•$\overrightarrow{n}$=$\frac{1}{2}$£®ËùÒÔ$\frac{1}{2}$=2cos2A-2cosA+1£¬
½âµÃcosA=$\frac{1}{2}$£¨5·Ö£©
¡ß0£¼A£¼¦Ð£¬
¡àA=$\frac{¦Ð}{3}$£¨6·Ö£©
£¨2£©¡ß2bsinB=£¨2a-c£©sinA+£¨2c-a£©sinC£¬
¡àÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º2b2=£¨2a-c£©a+£¨2c-a£©c£¬ÕûÀí¿ÉµÃ£ºa2+c2-b2=ac£¬
¡àÓÉÓàÏÒ¶¨Àí¿ÉµÃ£ºcosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$£¬½áºÏ·¶Î§£º0£¼B£¼¦Ð£¬½âµÃB=$\frac{¦Ð}{3}$£¬
¡à½âµÃ£ºC=A=B=$\frac{¦Ð}{3}$£¬¡÷ABCΪµÈ±ßÈý½ÇÐΣ®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËƽÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬¿¼²éÁËÕýÏÒ¶¨Àí£¬ÓàÏÒ¶¨ÀíµÄ×ÛºÏÓ¦Óã¬ÊôÓÚÖеµÌ⣮
A£® | $\frac{1}{¦Ð}$ | B£® | $\frac{2}{¦Ð}$ | C£® | $\frac{3}{¦Ð}$ | D£® | $\frac{4}{¦Ð}$ |
A£® | 1.5 | B£® | 3 | C£® | 0.5 | D£® | 3.5 |
A£® | -3 | B£® | 3 | C£® | -$\frac{1}{3}$ | D£® | $\frac{1}{3}$ |