搜索
题目内容
正三棱锥的一个侧面的面积与底面积之比为2∶3,则这个三棱锥的侧面和底面所成二面角的度数为_________.
试题答案
相关练习册答案
60°
设一个侧面面积为
S
1
,底面面积为
S
,则这个侧面在底面上射影的面积为
,由题设得
,设侧面与底面所成二面角为
θ
,则cos
θ
=
,∴
θ
=60°.
练习册系列答案
天天向上提分金卷系列答案
新思路辅导与训练系列答案
说明与检测系列答案
全程优选测试卷系列答案
沸腾英语系列答案
考点同步解读系列答案
同步导学创新学习系列答案
学习总动员单元复习专项复习期末复习系列答案
课时周测月考系列答案
课时练课时笔记系列答案
相关题目
(12’)如图,在棱长为2的正方体
ABCD
-
A
1
B
1
C
1
D
1
中,
E
是
BC
1
的中点,求直线
DE
与平面
ABCD
所成角的大小(结果用反三角函数表示).
如图,
在平面
上的射影为正
,若
,
,
,求平面
与平面
所成锐二面角的大小.
如图所示,在四面体ABCD中,E、F分别是线段AD、BC上的点,
=
=
,AB=CD=3,EF=
,求AB、CD所成角的大小.
将正方形
沿对角线
折成直二面角,给出下列四个结论:①
;②
与
所成角为
;③
为正三角形;④
与平面
所成角为
。其中正确的结论是
(填写结论的序号)。
正方形ABCD中,以对角线BD为折线,把ΔABD折起,使二面角Aˊ-BD-C为60°,求二面角B-AˊC-D的余弦值
(本题14
分)如图,五面体
中
,
.底面
是正三角形,
.
四边形
是矩形
,
二面角
为直二面角.
(1)
在
上运动,当
在何处时,有
∥平面
,并且
说明理由;
(2)当
∥平面
时,求二面角
的
余弦值.
在正方体ABCD-A
1
B
1
C
1
D
1
中,O为AC,BD的交点,则C
1
O与A
1
D所成角余弦( )
A.
1
2
B.0
C.
3
6
D.
3
3
在四面体
中,已知棱
的长为
,其余各棱长都为
,则二面角
的余弦值为( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总