题目内容
【题目】已知数列是首项为1的等差数列,数列是公比不为1的等比数列,且满足,,
(1)求数列,的通项公式;
(2)令,记数列的前n项和为,求证:对任意的,都有;
(3)若数列满足,,记,是否存在整数,使得对任意的 都有成立?若存在,求出的值;若不存在,说明理由.
【答案】(1),;(2)证明见解析;(3)存在整数,使得对任意的都有成立,理由见解析.
【解析】
(1)利用等差等比数列的基本量表示已知条件,解方程组得到基本量,利用等差等比数列的通项公式得到答案;
(2)根据(1)的结论得到数列的通项公式,利用指数的运算裂项,相消求和后得到的表达式,判定单调性,然后利用不等式的基本性质即可证明;
(3)假设存在满足要求的整数,取得到的范围,进而求得的值为,然后证明当时,对任意的,都有成立.为此先要根据,利用等比数列的求和公式,求得,结合,求得,然后利用作差法证明即可.
(1)设等差数列的公差为d,等比数列的公比为,
则,所以,
因为,所以.
所以,解得
所以,.
(2)因为
所以
又因为对任意的,都有单调递增,
即,
所以对任意的,都有成立;
(3)假设存在满足要求的整数,
令,则,解得;
令,则,解得;
令,则,解得;
所以,
又已知,故若存在,则.
下证:当时,对任意的,都有成立.
;
;
即
又;
所以
则
而对任意的,单调递增,
所以
即对任意的都有成立,得证.
所以,存在整数,使得对任意的都有成立.
【题目】某地区对当地的某种土特产的销售量y(吨)和销售单价x(元/千克)之间的关系进行了调查,得到下表中的数据:
销售单价x(元/千克) | 11 | 10.5 | 10 | 9.5 | 9 | 8 |
销售量y(吨) | 5 | 6 | 8 | 10 | 11 | 14.1 |
(1)根据前5组数据,求出y关于x的回归直线方程.
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5,则认为回归直线方程是理想的,试问(1)中得到的回归直线方程是否理想?
(3)如果销售量y(吨)和销售单价x(元/千克)之间仍然服从(1)中的关系,进货成本为2.5元/千克,且货源充足(未售完的部分可按成本价全部售出),为了使利润最大,请你就如何确定销售单价给出合理建议.(每千克销售单价不超过12元)
参考公式:回归直线方程,其中.
参考数据:.