题目内容
【题目】已知圆: 和抛物线: , 为坐标原点.
(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;
(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标.
【答案】(1);(2)或.
【解析】试题分析: 直线与圆相切只需圆心到直线的距离等于圆的半径,直线与曲线相交于两点,且满足,只需数量积为0,要联立方程组设而不求,利用坐标关系及根与系数关系解题,这是解析几何常用解题方法,第二步利用直线的斜率找出坐标满足的要求,再利用两直线与圆相切,求出点的坐标.
试题解析:(1)解:设, , ,由和圆相切,得.
∴.
由消去,并整理得,
∴, .
由,得,即.
∴.
∴,
∴,
∴.
∴.
∴或(舍).
当时, ,故直线的方程为.
(2)设, , ,则.
∴.
设,由直线和圆相切,得,
即.
设,同理可得: .
故是方程的两根,故.
由得,故.
同理,则,即.
∴,解或.
当时, ;当时, .
故或.
练习册系列答案
相关题目