题目内容
(本小题满分12分)如图,四棱锥
中,底面
为矩形,
底面
,
,点
是棱
的中点.
(1)证明:
平面
;
(2)若
,求二面角
的平面角的余弦值. ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145219739743.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521739603.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521754526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521786394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521754526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521817647.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521832318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521864365.png)
(1)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521879428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521895448.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521910434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521942578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145219739743.png)
(1)见解析;(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522004448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522004448.png)
(1)
底面![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521754526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522066223.png)
⊥![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522129396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522066223.png)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522129396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522066223.png)
⊥
.
⊥平面![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522269441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522066223.png)
⊥
,进而确定
⊥平面
.
(2)解第(2)的关键是判断出
为等边三角形,
为等腰直角三角形,然后取
的中点
,连接
,确定
为所求的二面角的平面角.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082321452259711844.png)
(1)证明:由
⊥底面
,得
⊥
,由
=
知
为等腰直角三角形,又点
是棱
的中点,故
⊥
由题意知
⊥
,又
是
在面
内的射影,由三垂线定理得
⊥
,从而
⊥平面
,因
⊥
,
⊥
,所以
⊥平面
.
(2)解:由(1)知
⊥平面
,又
//
,得
⊥平面
,故
⊥
.
在
中,
=
=
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145234241108.png)
从而在
,所以
为等边三角形,
取
的中点
,连接
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523517595.png)
因
=
=1,且
⊥
,则
为等腰直角三角形,连接
,则
⊥
,
所以
为所求的二面角的平面角.
连接
,在
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145237672422.png)
所以
故二面角
的平面角的余弦值为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522004448.png)
解二:(1)如图,以
为坐标原点,射线
、
、
分别为
轴、
轴、
轴正半轴,建立空间直角坐标系.
设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523985315.png)
,则
.
于是
, ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524094778.png)
则
,所以
⊥平面
.
(2)解:设平面
的法向量为
,由(1)知,
⊥平面
,
故可取![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145243131068.png)
设平面
的法向量
,则
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524391652.png)
由
=1,得
从而![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145245161322.png)
故
所以
可取![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524578889.png)
从而
所以二面角
的平面角的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522004448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082321452259711844.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521786394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521754526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522066223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522082367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522129396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522066223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522082367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522129396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522066223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522222410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521864365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522254398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522269441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522066223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522222410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522254398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522222410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521895448.png)
(2)解第(2)的关键是判断出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522378552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522394554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522410414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522425302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522550396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522566511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082321452259711844.png)
(1)证明:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522082367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521754526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522082367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522129396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522082367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522129396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522846516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521832318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521864365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522222410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521864365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522254398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522129396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522129396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521864365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521754526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522254398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521864365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522254398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522269441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522222410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523096368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522222410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522254398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522222410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521895448.png)
(2)解:由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522254398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522269441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523236385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522254398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523236385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522269441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523236385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522222410.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523346604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522082367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522129396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523408336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145234241108.png)
从而在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145234391575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522378552.png)
取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522410414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522425302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522550396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523517595.png)
因
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523564396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522254398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522254398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523564396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522394554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523642393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523642393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522410414.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522566511.png)
连接
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523720374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523751538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145237672422.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145237821370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521942578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522004448.png)
解二:(1)如图,以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523845300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522129396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523236385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523892377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523923266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523938310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523970231.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214523985315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524001502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524032902.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145240481117.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145240631300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524094778.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524110863.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522222410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521895448.png)
(2)解:设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524172480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524188297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522222410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524172480.png)
故可取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145243131068.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524328485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524360722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524375642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524391652.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524406439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524422871.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145245161322.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145245311244.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524562732.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214524578889.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145245941222.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214521942578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214522004448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082321452259711844.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目