题目内容
【题目】在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利润.
(1)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;
(2)估计该天食堂利润不少于760元的概率.
【答案】(1)答案见解析;(2)0.65.
【解析】试题分析:
(1)利用中点近似频率分布直方图的数值计算可得平均数为75.5;读取频率分布直方图可得众数为75;中位数为75.
(2)由题意可得利润函数为: 结合频率分布直方图计算可得食堂利润不少于760元的概率是0.65.
试题解析:
(1)由频率分布直方图知,
所以平均数为75.5;众数为75;中位数为75.
(2)一斤米粉的售价是元.
当时, .
当时, .
故
设利润不少于760元为事件,
利润不少于760元时,即.
解得,即.
由直方图可知,当时,
.
故该天食堂利润不少于760元的概率为0.65.
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.
表1:甲套设备的样本的频数分布表
质量指标值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
频数 | 1 | 4 | 19 | 20 | 5 | 1 |
图1:乙套设备的样本的频率分布直方图
(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;
甲套设备 | 乙套设备 | 合计 | |||||||||||||
合格品 | |||||||||||||||
不合格品 | |||||||||||||||
合计 | ,求的期望. |
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.