ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖª£¨$\sqrt{x}$-$\frac{2}{\sqrt{x}}$£©n¶þÏîÕ¹¿ªÊ½ÖУ¬µÚ4ÏîµÄ¶þÏîʽϵÊýÓëµÚ3ÏîµÄ¶þÏîʽϵÊýµÄ±ÈΪ8£º3£¨1£©ÇónµÄÖµ£»
£¨2£©ÇóÕ¹¿ªÊ½ÖÐx3ÏîµÄϵÊý
£¨3£©¼ÆËãʽ×ÓC${\;}_{10}^{0}$-2C${\;}_{10}^{1}$+4C${\;}_{10}^{2}$-8C${\;}_{10}^{3}$+¡+1024C${\;}_{10}^{10}$µÄÖµ£®
·ÖÎö £¨1£©Ö±½ÓÀûÓÃÌõ¼þ¿ÉµÃ$\frac{{C}_{n}^{3}}{{C}_{n}^{2}}$=$\frac{8}{3}$£¬ÇóµÃnµÄÖµ£®
£¨2£©ÔÚ¶þÏîÕ¹¿ªÊ½µÄͨÏʽÖУ¬ÁîxµÄÃÝÖ¸ÊýµÈÓÚ03£¬Çó³örµÄÖµ£¬¼´¿ÉÇóµÃÕ¹¿ªÊ½ÖÐx3ÏîµÄϵÊý£®
£¨3£©ÔÚ£¨$\sqrt{x}$-$\frac{2}{\sqrt{x}}$£©10¶þÏîÕ¹¿ªÊ½ÖУ¬Áîx=1£¬¿ÉµÃʽ×ÓC${\;}_{10}^{0}$-2C${\;}_{10}^{1}$+4C${\;}_{10}^{2}$-8C${\;}_{10}^{3}$+¡+1024C${\;}_{10}^{10}$µÄÖµ£®
½â´ð ½â£º£¨1£©ÓɵÚ4ÏîµÄ¶þÏîʽϵÊýÓëµÚ3ÏîµÄ¶þÏîʽϵÊýµÄ±ÈΪ8£º3£¬¿ÉµÃ$\frac{{C}_{n}^{3}}{{C}_{n}^{2}}$=$\frac{8}{3}$£¬
»¯¼ò¿ÉµÃ$\frac{n-2}{3}$=$\frac{8}{3}$£¬ÇóµÃn=10£®
£¨2£©ÓÉÓÚ£¨$\sqrt{x}$-$\frac{2}{\sqrt{x}}$£©n¶þÏîÕ¹¿ªÊ½µÄͨÏʽΪ Tr+1=£¨-2£©r•${C}_{10}^{r}$•x5-r£¬
Áî5-r=3£¬ÇóµÃ r=2£¬¿ÉµÃÕ¹¿ªÊ½ÖÐx3ÏîµÄϵÊýΪ£¨-2£©2•${C}_{10}^{2}$=180£®
£¨III£©ÓɶþÏîʽ¶¨Àí¿ÉµÃ${£¨\sqrt{x}-\frac{2}{{\sqrt{x}}}£©^n}=\sum_{r=0}^{10}{{{£¨-2£©}^r}C_{10}^r{x^{5-r}}}$£¬
ËùÒÔÁîx=1µÃ$C_{10}^0-2C_{10}^1+4C_{10}^2-8C_{10}^3+¡+1024C_{10}^{10}$=£¨1-2£©10=1£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶þÏîʽ¶¨ÀíµÄÓ¦Ó㬶þÏîÕ¹¿ªÊ½µÄͨÏʽ£¬×¢Òâ¸ù¾ÝÌâÒ⣬·ÖÎöËù¸ø´úÊýʽµÄÌص㣬ͨ¹ý¸ø¶þÏîʽµÄx¸³Öµ£¬ÇóÕ¹¿ªÊ½µÄϵÊýºÍ£¬ÊôÓÚ»ù´¡Ì⣮
A£® | {-1£¬2} | B£® | {1£¬2} | C£® | {0£¬1£¬2} | D£® | {2} |
A£® | Àà±ÈÍÆÀíÊÇÒ»°ãµ½ÌØÊâµÄÍÆÀí | |
B£® | ÑÝÒïÍÆÀíµÄ½áÂÛÒ»¶¨ÊÇÕýÈ·µÄ | |
C£® | ºÏÇéÍÆÀíµÄ½áÂÛÒ»¶¨ÊÇÕýÈ·µÄ | |
D£® | ÑÝÒïÍÆÀíÔÚÇ°ÌáºÍÍÆÀíÐÎʽ¶¼ÕýÈ·µÄÇ°ÌáÏ£¬µÃµ½µÄ½áÂÛÒ»¶¨ÊÇÕýÈ·µÄ |