题目内容
【题目】设中心在原点O,焦点在x轴上的椭圆C过点,F为C的右焦点,⊙F的方程为
(1)求C的方程;
(2)若直线与⊙O相切,与⊙F交于M、N两点,与C交于P、Q两点,其中M、P在第一象限,记⊙O的面积为,求取最大值时,直线l的方程.
【答案】(1) (2)
【解析】
(1)由圆的方程求出圆心坐标即得焦点方程,由椭圆上的点到两焦点的距离和得长轴长,从而有,再把点的坐标代入椭圆方程,及值可求得得椭圆标准方程;
(2)先确定与圆和椭圆的位置关系,为下面作距离的差做准备.直线方程与椭圆方程联立,消元后的二次方程,设,由韦达定理,得
,.由椭圆中的弦长公式得,然后求,由原点到直线的距离求得圆半径得面积,求出后用基本不等式可求得最大值及此时的值,得直线方程.
(1)解:设C的方程为.
由题设知①
因为⊙F的标准方程为,
所以F的坐标为,半径.
设左焦点为,则的坐标为.
由椭圆定义,可得
②
由①②解得.
所以C的方程为.
(2)由题设可知,M在C外,N在C内,P在⊙F内,Q在⊙F外,在直线l上的四点满足
.
由消去y得
因为直线l过椭圆C内的右焦点F,
所以该方程的判别式恒成立.
设
由韦达定理,得
.
又因为⊙F的直径,
所以
.
可化为.
因为l与⊙O相切,所以⊙O的半径,
所以.
所以
.
当且仅当,即时等号成立.
因此,直线l的方程为.
【题目】东莞的轻轨给市民出行带来了很大的方便,越来越多的市民选择乘坐轻轨出行,很多市民都会开汽车到离家最近的轻轨站,将车停放在轻轨站停车场,然后进站乘轻轨出行,这给轻轨站停车场带来很大的压力.某轻轨站停车场为了解决这个问题,决定对机动车停车施行收费制度,收费标准如下:4小时内(含4小时)每辆每次收费5元;超过4小时不超过6小时,每增加一小时收费增加3元;超过6小时不超过8小时,每增加一小时收费增加4元,超过8小时至24小时内(含24小时)收费30元;超过24小时,按前述标准重新计费.上述标准不足一小时的按一小时计费.为了调查该停车场一天的收费情况,现统计1000辆车的停留时间(假设每辆车一天内在该停车场仅停车一次),得到下面的频数分布表:
(小时) | ||||||
频数(车次) | 100 | 100 | 200 | 200 | 350 | 50 |
以车辆在停车场停留时间位于各区间的频率代替车辆在停车场停留时间位于各区间的概率.
(1)现在用分层抽样的方法从上面1000辆车中抽取了100辆车进行进一步深入调研,记录并统计了停车时长与司机性别的列联表:
男 | 女 | 合计 | |
不超过6小时 | 30 | ||
6小时以上 | 20 | ||
合计 | 100 |
完成上述列联表,并判断能否有90%的把握认为“停车是否超过6小时”与性别有关?
(2)(i)表示某辆车一天之内(含一天)在该停车场停车一次所交费用,求的概率分布列及期望;
(ii)现随机抽取该停车场内停放的3辆车,表示3辆车中停车费用大于的车辆数,求的概率.
参考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【题目】班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
数学成绩 | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成绩 | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;
②根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:线性回归方程,
其中,.
76 | 83 | 812 | 526 |