题目内容
【题目】在平面四边形ABCD中,AB⊥BC,∠BCD=120°,△ABD是边长为2的正三角形,E是AB边上的动点,则的最小值为_____.
【答案】
【解析】
将四边形放入坐标系,结合三角函数定义求出对应点的坐标,利用向量数量积公式转化为一元二次函数进行求求解即可.
解:当四边形ABCD放入平面直角坐标系,
∵AB⊥BC,∠BCD=120°,△ABD是边长为2的正三角形,
∴D(2cos30°,2sin30°),即D(,1),
∵∠CDB=90°﹣60°=30°,∠BCD=120°
∴∠CDB=30°,即△BCD是等腰三角形,
取BD的中点E,
则BE=1,
则cos30°,
即BC,即C(,0),
设E(0,b),0≤b≤2,
则(,b﹣1),(,b),
则(,b﹣1)(,b)=2+b(b﹣1)=b2﹣b+2
=(b)2+2═(b)2,
∴当b时,数量积取得最小值,
故答案为:
练习册系列答案
相关题目