题目内容

【题目】如图,△ABC内接于☉O,AB=AC,直线MN切☉O于点C,弦BD∥MN,AC与BD相交于点E.

(1)求证:△ABE≌△ACD;
(2)求证:BE=BC.

【答案】
(1)证明:∵BD∥MN,∴∠CDB=∠DCN.

又∠BAE=∠CDB,

∴∠BAE=∠DCN.

又直线MN是☉O的切线,

∴∠DCN=∠CAD.

∴∠BAE=∠CAD.

又∠ABE=∠ACD,AB=AC,

∴△ABE≌△ACD.


(2)证明:∵∠EBC=∠BCM,∠BCM=∠BDC,

∴∠EBC=∠BDC.

∴CB=CD.

∵∠BEC=∠EDC+∠ECD,∠ECD=∠ABE,

∴∠BEC=∠EBC+∠ABE=∠ABC.

又AB=AC,

∴∠ABC=∠ECB.

∴∠BEC=∠ECB.

∴BE=BC.


【解析】本题主要考查了弦切角的性质,解决问题的关键是根据弦切角的性质(1)由已知,得∠ABE=∠ACD,只需证明∠BAE=∠CAD,转化为证明∠BAE=∠CDB,∠CDB=∠DCN,∠DCN=∠CAD.(2)转化为证明∠BEC=∠ECB.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网