题目内容
【题目】某观测站在目标的南偏西方向,从出发有一条南偏东走向的公路,在处测得与相距的公路处有一个人正沿着此公路向走去,走到达,此时测得距离为,若此人必须在分钟内从处到达处,则此人的最小速度为( )
A. B. C. D.
【答案】B
【解析】由已知得∠CAB=25°+35°=60°,BC=31,CD=21,BD=20,可得,那么,
于是在△ABC中, =24,
在△ABC中,BC2=AC2+AB2-2AC·ABcos60°,即312=242+AB2-24AB,解得AB=35或AB=-11(舍去),因此AD=AB-BD=35-20=15.
故此人在D处距A处还有15 km,若此人必须在20分钟,即小时内从D处到达A处,则其最小速度为15÷=45(km/h).
故选B.
练习册系列答案
相关题目
【题目】已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:
0 | 1 | 2 | 3 | |
0 | 0.7 | 1.6 | 3.3 |
为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;
(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.