题目内容
2.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲 | 乙 | 丙 | 丁 | |
平均环数x | 8.3 | 8.8 | 8.8 | 8.7 |
方差s2 | 3.5 | 3.6 | 2.2 | 5.4 |
分析 根据平均数表示成绩的高低,方差表示成绩的稳定性,进行比较即可得出结论.
解答 解:∵甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大,
甲、乙、丙、丁四人的射击环数的方差中丙最小,
∴丙的射击水平最高且成绩最稳定,
∴从这四个人中选择一人参加该运动会射击项目比赛,
最佳人选是丙.
故答案为:丙.
点评 本题考查了利用平均数与方差表示一组数据的数字特征的应用问题,是基础题目.
练习册系列答案
相关题目
7.如图,四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$,则必有( )
A. | $\overrightarrow{AD}$=$\overrightarrow{CB}$ | B. | $\overrightarrow{OA}$=$\overrightarrow{OC}$ | C. | $\overrightarrow{AC}$=$\overrightarrow{DB}$ | D. | $\overrightarrow{DO}$=$\overrightarrow{OB}$ |