题目内容

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,btanB+btanA=﹣2ctanB,且a=8,△ABC的面积为 ,则b+c的值为

【答案】
【解析】解:∵在△ABC中btanB+btanA=﹣2ctanB, ∴由正弦定理可得sinB(tanA+tanB)=﹣2sinCtanB,
∴sinB(tanA+tanB)=﹣2sinC
∴cosB(tanA+tanB)=﹣2sinC,
∴cosB( + )=﹣2sinC,
∴cosB =﹣2sinC,
∴cosB = =﹣2sinC,
解得cosA=﹣ ,A=
∵a=8,由余弦定理可得:64=b2+c2+bc=(b+c)2﹣bc,①
∵△ABC的面积为 = bcsinA= bc,可得:bc=16,②
∴联立①②可得:b+c=4
所以答案是:4
【考点精析】关于本题考查的正弦定理的定义,需要了解正弦定理:才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网