题目内容

18.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率e=$\sqrt{3}$,且b=$\sqrt{2}$.
(Ⅰ)求双曲线C的方程;
(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且$\overrightarrow{PE}$•$\overrightarrow{PF}$=0,求△PEF的面积.

分析 (Ⅰ)利用C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率e=$\sqrt{3}$,且b=$\sqrt{2}$,求出几何量,即可求双曲线C的方程;
(Ⅱ)令|PE|=p,|PF|=q,$\overrightarrow{PE}$•$\overrightarrow{PF}$=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12,由双曲线定义:|p-q|=2a两边平方,把p2+q2代入即可求得pq,从而求出△PEF的面积.

解答 解:(Ⅰ)∵C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率e=$\sqrt{3}$,且b=$\sqrt{2}$,
∴$\frac{c}{a}$=$\sqrt{3}$,且b=$\sqrt{2}$,
∴a=1,c=$\sqrt{3}$
∴双曲线C的方程${x}^{2}-\frac{{y}^{2}}{2}=1$;
(Ⅱ)令|PE|=p,|PF|=q
由双曲线定义:|p-q|=2a=2
平方得:p2-2pq+q2=4
$\overrightarrow{PE}$•$\overrightarrow{PF}$=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12
所以pq=4
即S=$\frac{1}{2}$|PE|•|PF|=2.

点评 本题主要考查了双曲线的方程与性质,考查双曲线的定义.考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网