题目内容
【题目】已知函数f(x)=x3+3x对任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,则x∈ .
【答案】(﹣2, )
【解析】解:由题意得,函数的定义域是R,
且f(﹣x)=(﹣x)3+3(﹣x)=﹣(x3+3x)=﹣f(x),
所以f(x)是奇函数,
又f'(x)=3x2+3>0,所以f(x)在R上单调递增,
所以f(mx﹣2)+f(x)<0可化为:f(mx﹣2)<﹣f(x)=f(﹣x),
由f(x)递增知:mx﹣2<﹣x,即mx+x﹣2<0,
则对任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,
等价于对任意的m∈[﹣2,2],mx+x﹣2<0恒成立,
所以 ,解得﹣2<x< ,
即x的取值范围是(﹣2, ),
所以答案是:(﹣2, ).
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
练习册系列答案
相关题目
【题目】某工厂为了解用电量y与气温x℃之间的关系,随机统计了5天的用电量与当天气温,得到如下统计表:
曰期 | 8月1曰 | 8月7日 | 8月14日 | 8月18日 | 8月25日 |
平均气温(℃) | 33 | 30 | 32 | 30 | 25 |
用电量(万度) | 38 | 35 | 41 | 36 | 30 |
xiyi=5446, xi2=4538, = , = ﹣
(1)请根据表中的数据,求出y关于x的线性回归方程.据气象預报9月3日的平均气温是 23℃,请预测9月3日的用电量;(结果保留整数)
(2)请从表中任选两天,记用电量(万度)超过35的天数为ξ,求ξ的概率分布列,并求其数学期望和方差.