题目内容
若抛物线y2=4x的焦点是F准线是l,则过点F和点M(4,4)且与准线l相切的圆有( )
A.0个 | B.1个 | C.2个 | D.4个 |
C
:抛物线y2=4x的焦参数p=2,所以F(1,0),直线l:x=-1,即x+1=0,
设经过点M(4,4)、F(1,0),且与直线l相切的圆的圆心为Q(g,h),
则半径为Q到,l的距离,即1+g,所以圆的方程为(x-g)2+(y-h)2=(1+g)2,
将M、F的坐标代入,得(4-g)2+(4-h)2=(1+g)2,(1-g)2+(0-h)2=(1+g)2,
即h2-8h+1=10g①,
h2=4g②,②代入①,
得3h2+16h-2=0,解得h有两个解,那恶魔对应的g有两解,因此圆有2个,选C
设经过点M(4,4)、F(1,0),且与直线l相切的圆的圆心为Q(g,h),
则半径为Q到,l的距离,即1+g,所以圆的方程为(x-g)2+(y-h)2=(1+g)2,
将M、F的坐标代入,得(4-g)2+(4-h)2=(1+g)2,(1-g)2+(0-h)2=(1+g)2,
即h2-8h+1=10g①,
h2=4g②,②代入①,
得3h2+16h-2=0,解得h有两个解,那恶魔对应的g有两解,因此圆有2个,选C
练习册系列答案
相关题目