题目内容
2.设公比为q的等比数列{an}的前n项和为Sn,若Sn+1、Sn、Sn+2成等差数列,则q=-2.分析 通过记等比数列{an}的通项为an,利用Sn-Sn+1=Sn+2-Sn即-an•q=an•q+an•q2,计算即得结论.
解答 解:记等比数列{an}的通项为an,
则an+1=an•q,an+2=an•q2,
又∵Sn+1、Sn、Sn+2成等差数列,
∴Sn-Sn+1=Sn+2-Sn,
即-an•q=an•q+an•q2,
∴q2+2q=0,
∴q=-2,
故答案为:-2.
点评 本题考查等差数列、等比数列的性质,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
10.设数列{an}的前n项和为Sn,令${T_n}=\frac{{{S_1}+{S_2}+…+{S_n}}}{n}$,称Tn为数列a1,a2,…,an的“理想数”,已知数列a1,a2,…,a502的“理想数”为2012,那么数列5,a1,a2,…,a502的“理想数”为 ( )
A. | 2008 | B. | 2014 | C. | 2012 | D. | 2013 |
7.i10=( )
A. | 1 | B. | -1 | C. | i | D. | -i |
14.点O在△ABC内部且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow 0$,则△ABC的面积与△BOC的面积之比是( )
A. | $\frac{3}{2}$ | B. | 2 | C. | 3 | D. | 4 |
11.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)预测当广告费支出为9百万元时的销售额.
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(2)预测当广告费支出为9百万元时的销售额.
12.sin33°•sin63°+cos63°•sin57°的值等于( )
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |