题目内容
已知函数f(x)=Asin(ωx+
)(x∈R,A>0,ω>0)的最小正周期为T=6π,且f(2π)=2
(1)求ω和A的值;
(2)设α,β∈[0,
],f(3α+π)=
,f(3β+
)=-
;求cos(α-β)的值.
π |
6 |
(1)求ω和A的值;
(2)设α,β∈[0,
π |
2 |
16 |
5 |
5π |
2 |
20 |
13 |
(1)依题意得ω=
=
=
,
∴函数f(x)=Asin(
+
)(2分)
由f(2π)=2得Asin(
+
)=2,
即Asin
=2,
∴A=4(4分)
∴函数f(x)=4sin(
+
)(5分)
(2)由f(3α+π)=
,得4sin[
(3α+π)+
]=
,
即4sin(α+
)=
.
∴cosα=
,(6分)
又∵α∈[0,
],∴sinα=
.(7分)
由f(3β+
)=-
得4sin[
(3β+
)+
]=-
,即sin(β+π)=-
,
∴sinβ=
,(9分)
又∵β∈[0,
],
∴cosβ=
(10分)
cos(α-β)=cosαcosβ+sinαsinβ=
×
+
×
=
.(12分)
2π |
T |
2π |
6π |
1 |
3 |
∴函数f(x)=Asin(
x |
3 |
π |
6 |
由f(2π)=2得Asin(
2π |
3 |
π |
6 |
即Asin
5π |
6 |
∴A=4(4分)
∴函数f(x)=4sin(
x |
3 |
π |
6 |
(2)由f(3α+π)=
16 |
5 |
1 |
3 |
π |
6 |
16 |
5 |
即4sin(α+
π |
2 |
16 |
5 |
∴cosα=
4 |
5 |
又∵α∈[0,
π |
2 |
3 |
5 |
由f(3β+
5π |
2 |
20 |
13 |
1 |
3 |
5π |
2 |
π |
6 |
20 |
13 |
5 |
13 |
∴sinβ=
5 |
13 |
又∵β∈[0,
π |
2 |
∴cosβ=
12 |
13 |
cos(α-β)=cosαcosβ+sinαsinβ=
4 |
5 |
12 |
13 |
3 |
5 |
5 |
13 |
63 |
65 |
练习册系列答案
相关题目